215 research outputs found

    β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N = 82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process

    Get PDF
    G. Larusso et al.; 7 pags.; 5 figs.; 2 tabs.; PACS numbers: 23.40.-s, 26.30.Hj, 27.60.+j© 2015 American Physical Society. The β-decay half-lives of 110 neutron-rich isotopes of the elements from 37Rb to 50Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A ≈ 130) and the rare-earth-element (A ≈ 160) abundance peaks may result from the freeze-out of an (n, γ) ⇄ (γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.Part of the WAS3ABi was supported by the Rare Isotope Science Project which is funded by the Ministry of Education, Science, and Technology (MEST) and National Research Foundation (NRF) of Korea. This work was partially supported by KAKENHI (Grants No. 25247045, No. 2301752, and No. 25800130), the RIKEN Foreign Research Program, the Spanish Ministerio de Ciencia e Innovación (Contracts No. FPA2009-13377-C02 and No. FPA2011-29854-C04), the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357, the NASA Grant No. NNX10AH78G, and the Hungarian Scientific Research Fund OTKA Contract No. K100835.Peer Reviewe

    β decay of 129Cd and excited states in 129In

    Get PDF
    J. Taprogge et al.; 11 pags.; 8 figs.; 2 tabs.; PACS number(s): 23.20.Lv, 23.40.−s, 21.60.Cs, 27.60.+j©2015 American Physical Society. The β decay of 129Cd, produced in the relativistic fission of a 238U beam, was experimentally studied at the RIBF facility at the RIKEN Nishina Center. From the γ radiation emitted after the β decays, a level scheme of 129In was established comprising 31 excited states and 69 γ -ray transitions. The experimentally determined level energies are compared to state-of-the-art shell-model calculations. The half-lives of the two β-decaying states in 129Cd were deduced and the β feeding to excited states in 129In were analyzed. It is found that, as in most cases in the Z < 50, N 82 region, both decays are dominated by the ν0g7/2 → π0g9/2 Gamow–Teller transition, although the contribution of first-forbidden transitions cannot be neglected.This work was supported by the Spanish Ministerio de Ciencia e Innovacion under contracts FPA2009-13377-C02 and FPA2011-29854- C04, the Generalitat Valenciana (Spain) under grant PROMETEO/2010/101, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2012R1A1A1041763), the Priority Centers Research Program in Korea (2009-0093817), OTKA contract number K-100835, JSPS KAKENHI (Grant No. 25247045), the European Commission through the Marie Curie Actions call FP7-PEOPLE-2011-IEF under Contract No. 300096, the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, the “RIKEN foreign research program,” and the German BMBF (No. 05P12RDCIA and 05P12RDNUP) and HIC for FAIR.Peer Reviewe

    Study of ground and excited state decays in N approximate to Z Ag nuclei

    Get PDF
    4 pags., 4 figs. -- CGS15 – Capture Gamma-Ray Spectroscopy and Related TopicsA decay spectroscopy experiment was performed within the EURICA campaign at RIKEN in 2012. It aimed at the isomer and particle spectroscopy of excited states and ground states in the mass region below the doubly magic 100Sn. The N = Z nuclei 98In, 96Cd and 94Ag were of particular interest for the present study. Preliminary results on the neutron deficient nuclei 93Ag and 94Ag are presented. In 94Ag a more precise value for the half-life of the ground state’s superallowed Fermi transition was deduced. In addition the energy spectra of the mentioned decay could be reproduced through precise Geant4 simulations of the used active stopper SIMBA. This will enable us to extract Qβ values from the measured data. The decay of 93Ag is discussed based on the observed implantation-decay correlation events.This work was carried out at the RIBF operated by RIKEN Nishina Center, RIKEN and CNS, University of Tokyo. We acknowledge the EUROBALL Owners Committee for the loan of germanium detectors and the PreSpec Collaboration for the readout electronics of the cluster detectors. This work was supported by the German BMBF under Contract No. 05P12PKFNE and by the U.S. Department of Energy under grant No. DE-FG02-91ER-40609

    Evolution of proton single-particle states in neutron-rich Sb isotopes beyond N=82

    Get PDF
    International audienceThe β decay of the semimagic Sn isotopes Sn136,137,138 has been studied at the Radioactive Isotope Beam Factory at the RIKEN Nishina Center. The first experimental information on excited states was obtained for Sb137 while, in the case of Sb136, the established excitation scheme could be extended by ten previously unidentified levels. In the decay of the most-neutron-rich isotope Sn138, two γ rays were observed for the first time. The new experimental results, in combination with state-of-the-art shell-model calculations, provide the first information with respect to the evolution of the 0g7/2 and 1d5/2 proton single-particle states with increasing neutron number beyond N=84

    Beta-gamma spectroscopy of the neutron-rich 150Ba

    Get PDF
    International audience; Excited states in the neutron-rich nucleus 150Ba have been observed via β–γ spectroscopy at the Radioactive Isotope Beam Factory, RIKEN Nishina Center. The 150Ba ions were produced by the in-flight fission of a 238U beam with an energy of 345 MeV/nucleon. The E(2+) energy of 150Ba was identified at 100 keV, which is the lowest known in the neutron-rich Ba isotopes. A γ -ray peak was also observed at 597 keV. A mean-field calculation with a fully 3D real space was performed and a static octupole deformation was obtained for the Ba isotopes. Kπ = 0− and 1− excited states with significant octupole collectivity were newly predicted at around or lower than 1 MeV on the ground state of 150Ba by a random-phase approximation calculation. The 597 keV γ ray can be interpreted as a negative-parity state, showing that 150Ba may possess octupole collectivity
    corecore